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Abstract

This paper presents G mode! to evaluate the performance and overhead of
purallelizing sequential code using compiler directives for multiprocessing on
distributed shared memory (DSM) systems. With increasing popularity of shared
address space architectures. it is essential to understand their performance
impact on programs that benefit from shared memory multiprocessing. We piesent
a simple model to characterize the performance of programs that ure parallelized
using compiler directives for shared memory multiprocessing. We parallelized the
sequential implementation of NAS benchmacks using native Fortran77 compiler
directives for an Origin2000. which is a DSM system based on a cache-coherent
Non Uniform Memory Access {ccNUMA) architecture. We report measuremen!
based performance of these parallelized benchmarks from four perspecrives:
efficacv of parallelization process: scalabiliry; parallelization overhead; and
comparison with hand-parallelized and -cptimized version of the same
benchmarks. Our results indicate that sequential programs can conveniently be
parallelized for DSM systems using compiler directives but realizing performance
gains as predicted by the performance model depends primarily on minimiZing
architecture-specific data locality overhead.
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1 Introduction

Distribute Shared Memory (DSM) systems are becoming popular in high performance computing because
they offer ease of programming due to a global address space and scalability to large number of nodes.
Although DSM systems facilitate programming, they can potentially introduce performance bottlenecks
that require additional effort on the part of a user to discover and eliminate [20]. Non Uniform Memory
Access (NUMA) architectures can incur orders of magnitude greater latencies to access data that reside
farther from the brocessor in memory hierarchy [11]. These systems often use cache-based commodity
processor with cache coherence implemented in hardware to hide latency. Memory traffic generated by
protocols that keep the caches coherent is another potential source of performance degradation. While the
developers of compilation and parallelization tools for shared memory systems have addressed some of
these problems, extensive user input is still required to fully benefic from these tools [2,3.10.16].

Unuerstanding the sources of parallelism in a program and potential overhead due to subtleties of a DSM

architecture is essential for effectively using these systems.

Due to the growing disparity between processor and mzmory speeds, tool developers have been focusing
on measurzment-based tools to analyze memory performance. Several state-of-the-art microprocessors
provide on-chip performance counters to facilitate these measurements [20]. Howe;er. most of the existing
tools and techniques are limited to evaluating cache and memory performance for a single processcr [19].
These tools typically do not directly address multiprocessor memery performance issues. There are
examples of research prototype DSM systems that can support memory performance measurements across
mnultiprocassor nodes [7]. Uniortunately, such tools are not yet widely available for commercial
multiprocessors. We present a perfonmance model that accounts for inherent parallelism in a program.
which can result in potential speedup as well as overhead when that program is executed on a DSM system.
This model can be used to analyze the efficacy of parallelization and quantitatively measure the overhead
of parallelizing a program. Quantitative evaluation of this overhead provides an indirect measure of

effective u:ilization of available memory subsystem performance.

I: this paper. we present a performance model to characterize the execution of a compiler directives-based
parallelized program. We subsequently apply this model to evaluate the performance of our ;;arallelized
version of NAS benchmarks on SGI Origin2000. which is a commercial DSM system with a ccNUMA
architecture. Each node of the system consists of two MIPS R10000 processors with two levels of separate

data and instruction caches for each processor: and 4GB of main memory shared between two processors






on a node. Multiple system nodes are connected in a hypercube topology through a high speed network.
We used native tools to parallelized the sequential impiementation of NPBs [14]. Thesec tools include:
Power Fortran Accelerator (PFA). which can automatically insert parallelization directives in sequential
code and transform the loops to enhance their performance; Parallel Analyzer View (PAV), which can
annotate the results of dependence analysis of PFA and present them graphically; and Fortran77 compiler
with MP runtime library to compile and executed the parallelized code [13]. In addition to using these

tools, we inserted some directive by hand to assist the compiler and improve the performance.

We explain the directives-based parallelization paradigm in Section 2. A performance model and metrics to
evaluate different aspects of a directives-based parallelized program are presented in Section 3. Section 4
reports devciied measurement based evaluation of the peralleiized NAS benchmarks using performance

mode! 2nd metrics of Section 2. We briefly survey the related research efforts in Section 5 and conclude in

Section 0.

2 Compiler-Directed Parallelism

Compiler-directed parallelism has been traditionally used for vector supercomputers. It has recently started
attracting attention of mainstream vendors due to increasing popularity of S)'metﬁc Multiprocessing
(SMP) systems. Parallelization directives can be inserted in legacy sequential code to tap the
multiprocessing potertial of an SMP architecture. These directives are in the form of special comments that
are ignored by a compiier without appropriate multiprocessing flag. Thus, there is no need to mainzain
separate sequential and parallelized versions of the same code. There is an ongoing effort of standardizing

thes. directives to port programs across different SMP piatforms [15].

Potantial parallelism cf a DSM system can be exploited in one of three ways: message-passing: use of data-
paratie! languages: or compiler-directed multiprocessing. :lessage-passing provides the usec with explicit
control over communication and synchronizations through commonly used message-passing libraries [12].
Dura-paralle! programming lunguages allow the users to write SPMD programs without explicit message-
passit.z. which is handled by the compiier and its runtime system:. The main source of parallelism is the
program data. which can be distributed among different processors through compiler directives. High
Performance Fortran (HPF [6]) is a standard for these directives that have been used by several compiler
developers. Both message-passing and data-parallelism force a user to develop a parallel algorithm, which

is a challenging task. Due to the simplicity of programming shared memory systems, compiler developers



have been investigating different techniques to exploit parallelism directly by the compilers for such

sysiems. This process can be accomplished automatically with a compiler or through some hints provided

by the user to the compiler [15].

Before inserting compiler directives in sequential code, one has to identify parts of the program that can be
parallelized without affecting the correctness. The main source of parallelism is the loops whose iterations
can be scheduled on multiple processors without any data access dependence or conflicts among different
iterations. This requires dependence analysis for every loop nest of source code. For a given loop nest, it is
customary to parallelize the outer-most loop to have significant work for each set of iterations that are
scheduled on multiple processors. The user may have to modify some loop nests to resolve dependences on
the out=r-most loop index to parallelize the loop. If there are data dependencies between different iterations
of the outer loop, paralleiization is inhibited to preserve correctness of the program. As illustrated in Figure
1. this parallelization is an iterative process, which continues until most of the loops contributing to the
overal] evacution time are parallelized. Finally. the parallelized code is compiled and linked using with

uppropriute runtime libraries to execute on a target multiprocessor.

Ccde ot
) -duive Directive Paraltel code for
| Sequental code "‘Gdg'ecggggs as insertions an SMP system

Performance
evaluauon
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Figure 1. General methodology of parallelizing sequential code using compiler directives for shared
memory multiprocessing.

Compared to the process-level parallelism for message-passing programs, directive-based parallelism
constitutes a finer-grained. loop-level parallelism. Figure 2 provides an example of this parallelism
implemented through MIPS Fortran compiler directives for multiprocessing [13]. The CSDOACROSS
directive instructs the compiler to divide the outer loop iterations equally among the available processors.
This is the default loop scheduling. which is implemented by the runtime system until specifically
instructed otherwise by additional compiler directives. Data distribution directive, CSDISTRIB[}TE works

at the level of memory pages rather than array elements in data-parallel languages. Thus, the data

distribution is relatively coarse-grain.

Directives-based parallelism is supported by the MP runtime library on Origin2000. which implements a

W



integer 1. j. k
double precision temp
double precision a(256,256,256), b(256,256.256)
c8distribute a(*,*.BLOCK)
cSdistribute b(*,*.BLOCK)
c$doacross local(k.j.i.temp)
dok=1,254
doj=0,255
doi=1,255
tmp = 1.0d+00/ a(i.j.k)
b(i,j.k) = a(i,j.k) * tmp
enddo -
enddo
enddo

iigure 2. An example of inctruction-level parallelism using MipsPro Fortran77 compiler directives for
multiprocessing.

foric-:nd-join paradigm of parcilelism. A master thread initiates the program. creates multipie slave
threanis. schedules the iteratices of parallelized loops on all the threads including itself. wuits for the
camysietion oi a paralicl loop by ull the slave threads. and executes sequentiul potions of the program. Slave
threads wait for work (i.e., for parts of parallel loops) when the master thread executes a sequential portion
ot the code. Figure 3 represents this runtime system graphically. Clearly. the main disadvantage of this type

of parallelism is the overhead to synchronize different threads that execute different iterations of a loop.

Considering ease of programming. directives-based parallelism has clear advantages over message-passing
and data-parallelism. However. performance impact of using this programming style on a DSM systemis a

relativelv unexplored area. W= focus on performance evaluation of directives-basad parallelized programs

in subsequent sections.

3  Performance Model and Metrics

Comparad to message-passing and data-parallelism. compiler-directed parallelism is comparatively fine-
grained. Parallelism is discovered from thz loops in sequential program whose iterations can be scheduled
on multiple processors. It is simpler o quantify the amount of parallelism that has been discoverad in a
directives-based parallelized program. Based on these initial measurements, we can estimate the
performance with multiple processors under ideal conditions of utilization. We use these estimates to
quantify the overhead of directives-based parallelization techniques that is otherwise hidden from the user.

This analysis helps the user to decide whether or not a locality optimization effort will be useful. We first



Master thread

Exacute
Slave thread sequentia Slave thread

master
Wait for Exacute Wait for
work sequential WCiK
ortion ‘
v .

Figure 3. Execution of a parallel loop using fork-and-join paradigm with three threads.

explain the performance model with respect to DSM system architecture that we are focusing on.

Subsequently. we define metrics to evaluate parallelization and scalability of the pémllelized code.

3.1 Performance Model
Consider a sequential program consisting of N blocks. such that only one block is executed at any time.
Unless otherwise indicated, we shall use the term block interchangeably with subroutinc. This is true for

most of the programs developed in a structured monner. The sequential execution time of the program is

denoted by 7T, and is calculated as:

N
T1= z!i' (l)
r=1

where #; is the execution time spent in the i-th block. We have to measure the aggregate time spent in every

block of the code that substantially contributes toward the overall sequential executicn time. Therefore, we

?

define the sequential cost for executing the i-th block as a fraction:

SC = (2)

i

\il“

3

When a program is executed in parallel using fork-and-join paradigm. synchronization overhead is



incurred by slave threads to wait for parallel work and by the master thread to wait for all the slave threads

to finish executing a particular parallel loop. The execution time of a directives-based parallelized program

is denoted by T, and is given by:

N N N N
T,= Y ti+1,= 3 (p,+1s)+1, = U ADNIEI 3

=1 izl ial im]
where the (useful) execution time spent in the i-th block (z;) is the sum of time spent in parallelized loops of
that block (#p;) and the remaining sequential code of that block (ts;). Parallelization overhead for the entire
program is given by ¢, because it is non-trivial to measure it for each individual parallelized block of the
program using profiling. Considering the architecture of a ccNUMA-based DSM system, parallelization

overhead is an intricate function of following factors:

1. aggrzgate synchronization time between threads during execution of a parallelized program;

v

number of para'lel loops:
aggrzgate load imbalance between threads during executian of a parailzlized program:

non-local mamory accesses by each thread: and

o

5. resource contention between a thread and other users on the system.

While the first four factors may not changz from one execution to another, the resource contention due to
other users of the system affects in an unpredictable manner. Since directives-based parailelized programs
rely on access to shared data structures for synchronization as well as computations requiring non-local
data. ihey are particularly susceptible to the contention from othar users Quantitative calculation of

parallelization overhead and other metrics are presented in the following subsection.

3.2 Performance Metrics
Consider that a subroutine j in the program has K parallelized loops. Then we define the metric parallel

coverage of subrouting j as:

IVE
3

{4

PC. =

J

ﬂ’

b
L3

Note that parallel coverage of a subroutine can be determined by profiling the execution of a sequential
program. This technique is often used to determine the fraction of code that can be executed in parallel [4].
The total parallel coverage of a parallelized program is equal to the sum of parallel coverages of all

subroutines in the program. If there are L subroutines in a program. then the parallel coverage of the entire



program is calculated as:

PC = ir’c 5 (5

jal
A value of PC close to 1.0 (or 100%, if expressed as a percentage) will be an ideal value for a parallelized
program indicating that there is no sequential code and no parallelization overhead. Therefore, executing
such a program on n processors should result in a speedup of n, provided that all the processors are fully

utilized during the entire execution. A higher value of this metric is desirable because it represents a better

parallelization of sequential code.

Amdahl’s law based on fixed workload can be used as a measure of scalability of the parallelized code
under fork-and-join execution model. According to Amdahl's law if a is the sequential fraction of a

program, the maximum possible speedup that can be obtained on an n processor system is given by:

1 n

S, = = .. &

a+l—a l+ain-1
n

where a is the fraction of serial portion of the code. Noting that parallel coverage PC=1-a, we can express

ideal speedup according to Amdahl’s law as:

n
§ =" 7
Sh = FETAIoPC) (

Using this definition of theoretical speedup. we can now calculate the combined value of parallelization

overhead as:

N 7-’
ty= Ty= 3 (tp;+15) = T,==(PC+n(1-PC)). (8)

1=

where T, is the measured execution time on n processors.

Parailel coverage and speedup metrics defined by equations (5) and (7). raspectively for independent
assessment of a directives-based parallelized program. In order to compare the performance of a directive-
based parallelized program with the same program parallelized using a different technique, we use

execution time as a metric. Additionally. equation (8) will be used for evaluating parallelization overhead

for directives-based parallelized programs.



4 Performance Evaluation

Performance is evaluated from three perspectives: efficacy of parallelization process; scalability of
parallelized programs; and performance comparison of directives-based parallelized program against the

hand-parallelized and optimized code. The metrics discussed in Section 3.2 are used for this evaluation.

®
4.1 Analysis of Parallelization
Parallel coverage is defined in Section 3.2 as a metric to represent the efficacy of parallelization process.
This metric was calculated for all NAS benchmarks parallelized using compiler directives for shared
memory multiprocessing. For these calculations, the benchmarks are compiled with instrumentation to

measure the time spent in each subroutine that contains parallel code bloc ks. We execute these programs on

a single processor of Origin2000.

Table | presents detailed measurements related to parallel coverage ottained in BT. Sequential
implementation of BT contains a number of modular subroutines that solve Navier-Stokes equations using
a Block Tridiagonal algorithms. An inspection of thess subroutines indicates that most of this algorithm
contains sufficient parallelism. Quantitatively. these measurements indicate that the code responsible for
more than 99% of the entire execution time is parallelized. This level of parallelism was attained after

iteratively analyzing the source code and discovering possibilities of parallelization by minor modifications

in some loop nests.

The same measurement procedure was repeated to calculate parallel coverages for FT, CG. and MG
benchmarks. A summary of these calculations is reported in Table 2. Unlike BT, we relied on native SGI
tools (PFA and PAV) to parallelize these benchmarks. Furthermore, we had to manually perform inter-

procedural analysis to parallelize a few important loops in FT.

Tatle 2. Parallel coverage of FT. CG, and MG benchmarks.

- Execution
time for
Execution paralleiblocks | Parallel
Benchmark time (sec) (sec) Coverage (¢}
FT 203.70 200.15 98.26 )
CG 5065 48.49 95.75
MG 96.93 90.56 93.43

The results shown in Table 2 suggest that 93%-99% of the code is parallelized. [t should be noted that

10






Table 1. Parallelization statistics obtained from measurements of BT on an Origin2000 node.
Sequential cost and parallel coverage is expressed as a percentage of total executioc time, which is
2723.96 sec for this particular execution.

Execution
Sequential time for
Subroutines with overall time parallelblocks | Sequential Parallel
parallelized code (sec) (sec) Cost (%) Coverage (%)
add 18.05 19.05 0.6% 0.69
rhs_norm 0.13 0.13 0 0
exact_rhs 2.31 0.83 0.08 0.03
initialize 6.17 0.19 0.22 0

thsinit 235 234 0.08 0.08

lhsx 357.80 357.80 13.79 13.79

Ihsy 375.06 | 375.00 13.76 13.78

I ihsz 453.21 ' 453.20 16.63 16.€3

! compute_rhs 27%.45 ’ 272.45 10.00 10.00

L x_backsubstitute 103.75 102.75 3.8c 3.80

} x_solve_cell 304.49 3C4 48 1.17 11147
y_backsubstitute 106.87 10640 3.92 390 |

; y_soive_cell 306.C5 305.00 11.23 11.23

2_nacksubstitute 106.87 106.30 392 392

Z_solve_cell 307.25 307.10 11.28 11.27

Total 2723.80 2715.50 99.99 99.69

when a program is 100% parallelized. a linear speedup could be obtained provided that all the procassors
are equally utilized throughout the execution. This theoretical speedup will be used as < criteria to evaluate

the actual performance of parallelized code in the following subsections.

4.z Analysis of Scalability

Figure 4 presants the scalability characteristics ot the four parallelized benchmarks. The ideal execution
time values are calculated assuming a linear speedup from sequential execution rimes. Theoretical
execution time values are determined according to specdup obtained from equation (3 in Section 2 2. The
speedup is less than ideal or theoretical values for BT and FT. However. CG and MG exhibit close to ideai
specdup values. BT and FT are relatively larger programs compared to CG and MG. Addiuonally.
algorithms for BT and FT depend on a regular pattern of data accesses which is not the case for CG and
MG [5]. Lack of structured data accesses helps loop-level parallelization paradigm by' reducing
parallelization overhead unlike message-passing or data-parallelism. Therefore. BT and FT are susceptible
to overhead due to data locality as well as synchronization. Since these overhead are not significant for CG

and MG due 1o their structure as well as smaller number of parallelized loops. the speedup is close to ideal.



In fact. CG and MG show better than ideal speedup for some number of processors. This is not unusual for
a cache-based DSM system. Ideal or theoretical speedup is determined with respect to sequential execution
time, which is constrained by the amount of data that can be kept in caches. With computation and data
distributed on multiple cache-based processors of Origin2000, the effective cache size also increases

A resulting in higher than expected speedup for some executions of CG and MG.

- = — - lIdeal
— - = Theoretical
Measured

Execution time (sec)
Execution time (sec)

A e ke

; . 7‘9——\~¢-_:._.__,_,_.._-_-_F_°
) ) » E) ' ") = ™
Number of processors . - Number of processors _
(a) BT (b)FT

Execution time (sec)
Execution time (sec)

i) F] [} . » ) ] m . (] ~
Number of processors Number of processors

(c) CG (d) MG

Figure 4. Scalability characteristics of directives-based parallelized programs and their comparisons
with ideal and theoretical speedup.

Based on the results of scalability measurements, it can be observed that speedup close to the ideal and
theoretical values are attainable by parallelizing programs using directives-based approach. However, the
differences from the expected theoretical values of speedup should be expected for larger applic:iziopg_wgh ,
regular data accesses. In those cases. careful data distribution becomes important to obtain high speedup
values. In fact. many argue in favor of using fine-grained data distributions, similar to those used in

message-passing programs, in conjunction with shared memory multiprocessing directives to leverage the



benelits of both paradigms.

4.3 Parallelization Overhead

Measurement based results presented in Section 4.2 indicate that parallelization overhead is inevitable even
when the performance is close to ideal. The overhead stem from the cache-based DSM architecture as well
as excessive synchronization to support loop-level parallelization at the runtime. In order to put these
overhead in proper perspective, we first present the measured values of parallelization overhead for
directives-based parallelized implementation of NAS benchmarks in Section 4.3.1. Then we analyze

synchronization overhead using a synthetic loop nest in Section 4.3.2.

4.3.1 Measurciment of Parallelization ()verhead

Compared 1 FT. CG. and MG. considerably more time was spzr: on BT o analyze and tune its
performance. Speedup characteristics of BT basad solclv on its parallelization did not show any
appreciahle veduciion in execuvtion trme with increasing number of processors even with clos. o ideal
paralle! coverage as discussed in Sectior 4.1. This is duc to the overhead of accessing data not rovnd in
caches or local memory. Therefore, all parallelized loops were re-examined and additional directives that
enable data distribution at the granularity of pages of memory were inserted. Thrs resulted in significant
performance improvement compared to its initial unoptimized implementation. As shown in Figurc 4(a),
parallelization overhead is smail as a result of additional datw: distriburion directives. However. as we know
from the speedup characteristics of CG and MG. close o ideal speedup is attainable by removing data
locality overheud such that most of the data accesses are limited to the first level caches. We first try to

assess the quantitative value of this overhead for BT using equation (8.

Table 3 lists che ideal, theoreticul. and measured execuiion times for BT using multiple prccessors.
Parilleiization overhead is presented as a percentage of meusured execution time. Clearly, the actuzl
specdup is lower than the expected theoretical maximum value for any number of processors. Nute that the
pacallesization overheud continues to increase with the nuinber of processors and accounts for about 75%
f the total execttion time with o4 processors. This behavior is an wndication of non-optimal <ata
placement that results in non-local data accesses as well as cache coherence traffic. As we méntioned in
Section 3.1. it is difficult to quantify the parallelization overhead due to a number of factors that can
potentially aggravate it. Although the measurements presented in Table 3 suggest that the bottleneck could

be due to data locality overhead. it is practically impossible to isolate its quantitative contribution to overall



overhead due to other factors including synchronization and resvurce contention.

Table 3. Calculation of parallelization overhead of BT oun cn a range of 1 to 64 nodes of Origin2000.

Ideal Theoretical Measured
Number of execution time | execution time execution time Parallelization
processors (sec) (sec) (sec) overhead (%)
1 2723 2723 2723 0
4 680 687 931 26.20
9 303 310 455 31.85
16 170 178 374 52.41
25 109 117 216 45.83
36 76 84 186 54.84
49 56 64 182 64.84
64 43 51 198 74.24

Anong parallelization overhead, synchronization overhead can be measured using SGI's SpeedShop
toolset. which can determine the time spent in synchronization primitives of MP library. This pronling
information is obtained using hardware performance counters on MIPS RI0N000 processors. These
measurement based experiments were carried out for BT, FT. CG, and MG using relatively small number
of processors. Running such experiments for larger number of processors results in perwurbation of the
actual program to a point that profiling itself becownes a significant overhead. The results of these
experiments are reported in Table 4. Synchronization overhead for each case is obtained as a percentage of
maasured execution time. Synchronization overhead were as high as 19% in some cases. The last column
lists the total parallelization overhead obtained by subtracting measured execution time from the theoretical
execution time according to equation (8). In two cases. this calculation is not possible due to better than

expected speedup of CG and MG. which is a consequence of untuned sequential versions of these

programs as discussed in Section 4.2.

Although the measurements report up to 19% overhead due to synchronization, it is incorrect to assume
that synchronization overhead is a result of parallel loop scheduling alone. Synchronization and data
iocality overhead are strongly correlated with each other. The time that a master thread sperds waiting for
slaves to finish executing a parallel loop could be due to a combination of two reasons: (1) time to
synchronize multiple threads: and (2) load imbalance between master and some of the slave threads due to
their non-local data accesses. If resource contention from other users is also considered, the problem of

isolating one particular type of overhead becomes even more complex.

14



Table 4. Parallelization overhead for directives-based parallelized NAS benchmarks.

Theoretical Measured Measured Total
Number of | execution execution time || synchronization | overhead
Benchmarks | processors | time (sec) (sec) overhead (sec) (sec)
BT 4 804 1053 208 (19.75%) 249 (23.65%)
9 363 444 80 (17.98%) 81 (18.24%)
FT 4 35.24 39.66 2.62 (6.6%) 4.42(11.14%)
8 18.79 23.02 2.37 (10.3%) 4.23 (18.38%)
cG a 12.97 14.58 2.80 (19.2%) 1.61(11.04%)
8 7.46 4.78 0.74 (15.5%) —_
MG 4 22.14 18.41 0.63 (3.4%) -
8 13.50 14.92 0.60 (4.0%) 1.42 (9.5%)

4.3.2 Analysis of Loop Synchronizatioa Overhead

Before rexching any conclusions about parallelization overnead. a few simple experimen’s were carr.ed out
:u measure cynchronization overhead for distributing i>0p iterations. Code fragment lisied in Figure S is
used 1o isolats this overhead from any other as much u» possible. Note that all variabi2: accesseu n this
loop nest are labeled “local”™. W2 compiled and linked this code without any compiler opt:mization fags.
This guarantees that all data accesses in parallelized loops are from first level of caches without any non-

local accesses. Multiple SpeedShop profiling experiments with this cod= were exetuted on 4. 8. 9. and 16

processors.

intcgerii: joka
double precision uo. ul

uh=1.0
ul=1.0
cSdoacross local(i j.k.J.uO.ul)
doi=1,128
dok=1.128
doj=1.123
doi=1.128
ub=ul+l
end do
end do
end do
enddo

end

Figure 5. A synthetic program to analyze the synchronization overhead for directives-based parallelized
programs.



Figure 6 oresents the experimental results. Each bar represents measured synchronization overhead for one
execution of the program The toral execution time for four processors is about 1.2 seconds. which scales
linearly with increasing number of proccssors. This is consistent with the expected behavior due to a very
simple program. The overhead measurements are consistent for smaller number of processor showing a
variation in the range of 6%—19%. The 16 processor case shows larger overhead because it is presented as
a fraction of total execution time, which is very small in this case. Although we tried to ensure that data

locality overhead does not affect the measurements, we cannot isolate the overhead due to resource

contention from other users.

35 T - T T T

251

Synchronization overhead (%)

1

| ‘ |
| i
1 2] 9

Number of prncessors

Figure 6. Synchronization overhead for the synthetic loop nest.

Based on the results reported in this subsection. two conclusions can be drawn:

1. Assuming a properly tuned sequential version of a program to calculate accurate values of theoretical
speedup. it is possible to calculate the aggregate value of parallelization overhead.

2. Itis impractical to quantitatisely isolate the impact of different sources of parallelization overhead.

Calculation of aggregate parallelization overhead using the performance model of Section 3 provides
usetul information to the user. A high value of this overhead. despite near ideal parallel coverage. almost
certainly indicates a memory performance bottleneck. Parallelization overhead on a cache-based DSM

system will continue to reduce as most of the data is placed closest to the processor in the available

memory hicrarchy.
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4.4 Comparative Performance Analysis

NAS benchmarks were originally written as a suite of paper-and-pencil benchmarks to allow high-
performance computing system vendors and researchers to develop their own implementations to evaluate
specific architectures of their interest [S]. NAS also provides a hand-parallelized message-passing
implementation of the benchmarks based on MPI message-passing library [14]. This implementation is
carefully written and optimized for a majority of existing high performance computing platforms.
Therefore, we compare the performance of our directive-based implementation against the MPI-based
hand-parallelized implementation. It should be noticed that an MPI-based implementation differs from a
directives-based shared-memory implementation of the same program in two important respects:

1. program runs under Single Program. Multiple Data (SPMD) paradigm and shares data with explicit

message-passing anong multiple processes; and

data is distributed such differsnt processcrs “own” differeat elements of an array according to the tyre
of distributicen.

)

In contrast. shared-memorny parallelized programs ar: esecuted under a fork-and-jein paradigm with a
global address space. Additionally. data distribution directives result in the ownership of different pages of

data (arrays) by different processors, in contrast to the ownership of specific elements of an array.

Figura 7 presents the comparison bet\Qeen directives-based parallelized benchmarks and hand-parallelizad.
MPI-based versions of th= same. In all of these cases. performance improves with the number of
processors. For BT and FT. the MPl-based implementations perform slightly betier than the <nrared-
memory implementation due to data placement. Directives-based data distribution ¢esults in placing pazes
of arrays on multiple processors Coarse granularity of data distribution starts becoming a bottleneck for
larger number of processors because all loop iterations that use a particurar data elemenr cannot re co-
located zt the same node. Therefore. as the number of procassors increases. multiple processors have to
access data from pages that they do not own locally. which 2dversely impact the overall execution time. [n
contrast, « message-passing program is designad in a way that the programmer controls lccality of every
data ¢le: 20t As the number of processors increases, the amount of data owned by a processor reduces
proporucuatzly. This is a particularly favorable situation for a cache-based DSM sysrem because larger
proportions of local data can reside in caches to enhance memory system performance. We tuned BT s data
locality for almost all of the parallelized loops to ensure that each loop iteration is scheduled at a processor
that owns elements of an array accessed during those iterations. Consequently. the performance of BT is

comparable to its hand-parallelized implementation. Performance of two implementations of CG and MG
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is also comparable (see Figure 7 (c) and (d)). In case of CG and MG, data locality does not become a
bottieneck due to comparatively smaller size of code with smalier number of memory accesses. Therefore,

performance remains comparable with the hand-parallelized implementations of CG and MG.
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Figure 7. Performarce comparison of shared-memory multiprocessing directives-based parallelization
with MPI-based, hand-parallelized and -optimized versions of the same benchmarks.

4.5 Summary of Performance Evaluation

As a first step in evaluation process, the parallel coverage of each parallclized program was determined.
Despite above 90% parallel coverage in all cases. prograins cannot achieve close to ideal or theoretical
speedup due to parallelization overhead. Our extensive experiments indicate that a useful guantitative
measure of parallelization overhead is obtained by the performance model presented in this paper. which

calculates aggregate overhead without trying to isolate different types of overhead. Based on our

experience with performance tuning described here, we conclude that parallelization overhead can be



significantly reduced by improving data locality. Superior speedup of message-passing implementation ol

same benchmarks due to imprcved data locality supports this conclusion.

§ Related Work

Recent performance evaluation studies have examined the effect of data locality on the performance of
DSM systems. Anderson reports that overhead for programs that were parallelized with near 100% parallel
coverage and executed on Stanford DASH (a ccNUMA DSM system) resulted in signiﬁcantly inferior
speedup characteristics [4]. Performance was improved by analyzing data distribution. In our case, we
conclude that single processor cache performance is another key factor that can improve performance, in
addition to appropriate data distribution. Hristea et al present the results of several experiments tc evaluate

the performance of memory subsystem for ccNUMA systems (8]

Several research effarts have focused on parallelizing sequential programs for shared-memery
multiprocessors. These cfforts ars becoming increastng:y importunt Jue o the revival of shared-memory
multiprocessors with improved scalability via distributed memory and hardware cache ccherencz. SUIF
compiler system incorporates various modules that can be used to analyze the sequential program.
parallelize the loops. distribute program arrays. and perform inter-procedyral analysis [3.4]. Polaris is
another parallelizing compiler that can generate parallelized code for SMPs [16,18]. CAFTools is a sermi-
automatic parallelization tool that transforms a sequential program to a message-passing program by user-
directed distribution of arrays [9). Fortran-D [1] and various implementatiors of High Performance rortran
(HPF (6] are examples of parallelizing compilers that work for sequential programs that can benefit from
data parallelism. KAP [10] and PFA [13] are examples of commercial parallelization tools for SMPs. We
have experimented with most of these tools to paralielize sequential NAS benchmarks. Bused on this

experience and results reported in this paper. we consider that tools for SMPs are simplc to learn and use

and iz performance is promising.

6 Discussion and Conclusions

Dirc.uves-based parallelism is essentially a fine-grained parallelism that works at the level of individual
loop iterations. This is fundamentally different from conventional coarse-grained parallelism at the level of
processes or threads. When it is implemented carefully. it can obtain much better load-balance compared to

the conventional message-passing or data-parallel techniques. On the other hand, the user is required to

spend additional time to ensure proper data locality to obtain performance comparable to hand-
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parallelized, message-passing based implementation.

We presented a performance model to characterize the performance of directives-based parallelized
programs for an Origin2000 system. Using measurements, we quantitatively evaluated the fraction of code
that was parallelized. Further evaluation indicated reasonable speedup as well as significant parallelization
overhead. Based on extensive tuning of one pa;allelized program and some isolated experiments presented
in this paper, we conclude that non-local data accesses are the main source of parallelization overhead.
Performance can be optimized by keeping data at a level in memory hierarchy, which is closer to the

processor. Based on these results, we continue to further tune parallelized NAS benchmarks.

Evaluation of parallelization overhead based on performance model presented in this paper emphasizes the
need for appropriate instrumentation of multiprocessor memory subsystem. Such instrumentation is readily
accessible to a user for measurements limited to a single node only. Without hardware or software based
instrumentation of non-local memory accesses and cache-coherence traffic. direct measurement of data
locality overhead is not possible. Some commercial tool developers realize this problem and are working

on: tools that furnish multiprocessor memory performance measurements.
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